
Since Angular 14, Angular developers can write components, pipes, and
directives that do not belong to any specific modules. Those are called

 features. We will refer to them as standalone components
throughout this document, but remember that those can also be standalone
pipes and standalone directives.

standalone

Standalone Components
Cheatsheet
Alain Chautard | @AlainChautard

�� How to create a standalone feature with the Angular CLI?

ng generate component MyComponentName standalone--

It also works with ng generate pipe and ng generate directive.

2. How to turn an existing component into a standalone component?
Use the standalone: true decorator option, then remove your component
class from its current module:

@ {(

 selector: ,

 standalone: ,

 template: ‘ ’

)}

Component
'app-hello'

true
...

export class HelloComponent

3. How to add template dependencies to a standalone component?
If your component has template dependencies (pipes, directives, or other
components), you can import those using their module or individually if they are
standalone components using the imports array:

@ {(

 selector: ,

 standalone: ,

 imports: [,],

 template:

)}

Component

CommonModule HelloComponent

'my-app'

`

 	<h1 *ngIf="name">Hello from {{name}}!</h1>

 <app-hello></app-hello>

 `

true

export class HelloComponent

4. How to bootstrap an entire application with standalone
components?
Use the bootstrapApplication function (from @angular/platform-browser)
and pass the application root standalone component as a parameter:

bootstrapApplication();App

5. How to configure dependency injection for standalone
components?
Use the array of providers in your standalone component decorator:

@ {(

 selector: ,

 standalone: ,

 imports: [,],

 providers: [{provide: }],

Component

CommonModule HelloComponent
UserService

'my-app'
true

If you run a module-less application with a standalone component, you can also
configure your providers when calling the bootstrapApplication function:

Standalone Components Cheatsheet 02 / 05

bootstrapApplication(, {providers: [{provide:
}] });

App
UserService

6. How to include services from existing modules?
If you need to use the providers config from existing modules with your standalone
components, you can use the importProvidersFrom function (from @angular/
core):

 providers: [

 (,)

]

importProvidersFrom AdminModule CommonModule

7. How to use standalone components with the Angular router?
When bootstrapping a standalone component, you can also use a module-less
approach to your routing config using the provideRouter function (from
@angular/router):

const [

];

(, {

 providers: [()]

});

appRoutes

Appp
appRoutes

: =Routes

bootstrapApplication
provideRouter

// Routes go here

8. How to use lazy-loading with standalone components?
You can lazy-load a standalone component using the loadComponent option in
your route config:

Standalone Components Cheatsheet 03 / 05

{

 path: ,

 loadComponent: () ()

 . (.)

}

'test'
"src/app/hello/hello.component"=>

=>
import

then c c HelloComponent

If your standalone component is the of its source file (export
default class HelloComponent), then the above syntax can be simplified into:

default export

{

 path: ,

 loadComponent: () ()

}

'test'
"src/app/hello/hello.component"=> import

9. How to use lazy-loading with multiple standalone components at
once?
You can create a route file without any RouterModule using this approach, which
only works if all routed components are standalone components;

// In the main route config:

export : =
import

 [] [

 {path: , : () ()

 . (.)},

];

const
=>

=>

ROUTES

mod ALL_ROUTES

Route
'app' './routes'loadChildren

then mod
// ...

// In ./routes.ts

// ...

export : = [] [

 {path: , component: },

 {path: , component: },

]

const ALL_ROUTES
HelloComponent

AppComponent

Route
'hello'
''

Standalone Components Cheatsheet 04 / 05

10. How to provide scoped services for a given route?
You can add an array of providers to add providers that are scoped services for
that specific route and all child components under it:

{

 path: ,

 providers: [],

 children: [

 {path: , component: },

 {path: , component: },

],

},

'test'

'hello'
'admin'

UserService

HelloComponent
AdminComponent

11. How to support both standalone components and modules at the
same time?
If you’re a library author, you can give the option to access your components as
standalone or as part of a module. All you have to do is use the standalone:
true option in your components’ decorator and then make your components part
of the module that exports your feature:

@ ({

 imports: [,],

 exports: [,],

})

 {}

NgModule
HelloComponent AdminComponent
HelloComponent AdminComponent

export class HelloModule

Such components can be imported in two different ways as dependencies:�
� By importing HelloModul�
� By importing HelloComponent or AdminComponent individually in their

dependencies

Standalone Components Cheatsheet 05 / 05

